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/Motivation

» Goal: Perform knowledge-grounded generation to so

ve the LM hallucination
problem without incurring expensive training of the LV

» Objective: Use guided decoding approach to control the output of LM at

inference-time without tuning the LM weights.
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Figure 1: A schematic diagram showing the difference between memorizing
knowledge in model parameters, augmenting model input with knowledge and
training the LM (RAG), and our proposed knowledge constrained decoding, which
does not incur LM weight update.

Guided Decoding for Knowledge-Grounded Generation
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»Knowledge-Groundedness has distinctive features:
dDefined with a reference knowledge
dDefined on the fully generated sequence.

» Proposal:

U Define f(a, y, k), which denotes the groundedness (&) of the generated sequence y
with respect to the reference k.

J Approximate sequence-level groundedness to token-level. (RIPA)

1 Use Monte-Carlo Tree Search decoding to better estimate the future impact of current
token selection. (MCTS Decoding)

Reward Inflection-Point Approximation (RIPA)
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Figure 2: Comparison of RIPA against previous token-level approximations from
guided decoding literature.

»When approximating sequence-level groundedness to token-level, focus on the

first position of hallucination.

dTrain on all subsequence of the input = sample efficient (vs. Random truncation)
(JDoes not associate benign tokens before hallucination with the hallucination label. (vs.
Token Labeling)

Monte Carlo Tree Search Decoding (MCTS)

1. Selection 3. Rollout (Evaluation)

2. Expansion

4. Backpropagation
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Backpropagate the score back to
the root node.

Use Knowledge Classifier to
evaluate the token's groundedness

Repeat x N times

»Each node (step 3) is evaluated directly (no rollout) by RIPA = higher efficiency
»MCTS selects the token that maximizes future score of f (groundedness) based
on simulations

p

seudo-Negative Data Generation

J

» Most knowledge-grounded generation benchmarks do not include negative
data. To train the discriminator, we employed 2 approaches to pseudo-negative
data generation:
1 Knowledge Shuffle: Given a positive example (input, knowledge, response) from

the dataset, swap the ground truth knowledge with another one randomly
sampled from the dataset.

Partial Ha
Perform t
et the LM

lucination: Given a positive example (input, knowledge, response),
ne knowledge shuffle first, then randomly truncate the response and
complete the response with high temperature sampling.

The KCTS Method

(Flan-T5-XL in our experiments).

» Knowledge-Constrained Tree Search Decoding (KCTS)
 KCTS = RIPA + MCTS
1 KWD = RIPA + Weighted Decoding
»Overview:
1. We train RIPA with lightweight adapters from LoRA on top of the the base LM

the groundedness score from the classifier (step 1) to evaluate partial
sequences.

2. We decode each token using MCTS with fixed budget (50 simulations), using

» Hypothesis: RIPA + MCTS (KCTS) together better estimates full-sequence
groundedness, leading to more faithful sequences being generated.

Experiment
K-Overlap Token Overlap UniEval
Type Model

KF1 K-Copy | F1 BLEU Rouge. ChrF METEOR | N C G f
[y ChalGPT | 4941 3971 | 3032 691 2624 3495 31.67 5762 9641 96.15 | 95.82
GPT-35 | 2591 2822 | 2232 3.0l 1870  27.86 23.06 4277 9807 9242 | 92.63
SFT FT5-XL | 3985 3779 | 28.08 9.4l 2511 3117 25.40 76.44 9236 95.16 | 97.90
FI5-XL | 3450 37.07 | 21.18 6.8l 19.64  24.88 18.53 7169 8221 750 | 88.75
Z;;gt FTS-XXL | 2820 3233 | 1911 553 1755  24.15 17.16 7237 8424 7551 | 85.89
TO++ 2694 2880 | 17.57  4.13 1614  19.84 13.37 5279 8526 70.14 | 88.61
~ FUDGE | 5530 5404 | 2943 1172 2735 3150 26.00 73.68 8820 83.53 | 94.54
g;::;il;:i NADO 5020  50.10 | 27.86 1057 2601  29.84 2451 7414 8835 81.10 | 92.76
MCTS 5554 5421 | 2956 1169 2748  31.60 26.08 7454 88.16 83.90 | 95.07
ours KWD 58.19 5658 | 3071 1274 2827  33.40 28.10 7027 9051 87.86 | 97.54
KCTS 5606 5190 | 30.54 1142 2743 3522 28.92 6232 9278 9178 | 98.30

Table 1: Results on WoW Test set (unseen topics). SFT stands for supervised fine-
tuning, and FT5 is shorthand for Flan-T5. Under the UniEval metrics, each letter stands
for the following: N - Naturalness, C - Coherence, G - Groundedness. Boldface denotes
the best performance, and underline denotes the second best. LLM performance is for
reference and not for direct comparison.

Type Model K-Overlap Token Overlap UniEval MFMA
KF1 K-Copy| F1 BLEU Rougel. ChrF METEOR | Coh. Cons. fluency Relv. | score

1y ChAGPT | 2943 1792 |4045 1175 2785 4296  37.66 [93.85 9L67 8715 87.11| 80.62
GPT-3.5 |27.54 1694 |3896 1078 2663 41.17 3538 |9256 9033 8573 85.78 | 78.74
FT5-XL | 17.04 1018 | 3221 874 2402 3027 2447 |8482 8602 8990 8128 | 64.55

SFT FT5-XXL | 1745 1042 |3155 843 2338 2995 2391 |87.17 8858 9000 8228 | 6837
TO++ 2279 13.65 |38.82 13.64 2806 3853  33.68 |8657 8747 89.03 81.09| 69.38

~ FUDGE | 1868 1070 |33.51 932 2483 3106 2493 |9052 90.61 8337 82.00]| 71.35
g;::l‘i]::f NADO 2035 1172 |3510 1093 2622 3350 2734 |9226 9372 8841 8449 | 72.01
MCTS | 17.86 1004 |3459 900 2585 3090  25.12 |9430 9428 8651 8590 | 71.28

ous KWD 2039 1163 [3624 1230 2720 3425 2846 | 9624 96.64 9160 8848 | 8511
KCTS |2297 1329 |3827 1421 2810 3718 3137 |9585 9603 9024 87.16| 85.36

Table 2: Results on CNN/DM Test set. The guided decoding was conducted with FT5-XL
model as the base model. Coh., Cons., and Relv. stand for coherence, consistency, and
relevance, respectively.

»In both Dialogue (WoW) and Summarization (CNN/DM) tasks, Knowledge
Constrained Decoding (KCTS and KWD) outperforms previous decoding baselines,

and even LLMs in some cases, in the knowledge-groundedness metrics. (KF1,
Groundedness in WoW, and Consistency in CNN/DM)

Ablation Study

/

» Does KCTS really estimate future groundedness?

K-Overlap Token Overlap UniEval
T | o1 ooy | BLEC Rt | C 6 | » As more tokens are
5 | 4878 4822 | 1017 2539 | 90.58 85.87 | 90.58 constrained using KCTS at the
10 | 48.24 48.05 0.98 25.87 90.22 86.41 | 85.43 beglnnlng It prOVIdeS the LM
16 | 5149 4867 | 11.07 2644 | 9283 89.99 | 92.76 g _
32| 5606 5190 | 1142 2743 | 9278 9178 | 98.30 better starting point =2 the
Table 3: Number of initial tokens to be completion generated by LM is

constrained to the knowledge with KCTS. also more grounded.
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